AACR-NCI-EORTC Virtual International Conference on **MOLECULAR TARGETS AND CANCER THERAPEUTICS** October 7-10, 2021

AAACAR American Association for Cancer Research

Initial findings from an Ongoing First-in-Human Phase 1 Study of the CBP/p300 Inhibitor FT-7051 in Men with Metastatic Castration-Resistant Prostate Cancer

Andrew J. Armstrong¹, Michael S. Gordon², Melissa A. Reimers³, Arif Hussain⁴, Vaibhav G. Patel⁵, Elaine T. Lam⁶, Alex Sedkov⁷, Von Potter⁷, Neal Shore⁸

- 1. Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC
- 2. HonorHealth Research Institute, Scottsdale, AZ
- 3. Washington University in St. Louis, St. Louis, MO
- 4. University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
- 5. Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- 6. University of Colorado Cancer Center, Aurora, CO
- 7. Forma Therapeutics, Inc., Watertown, MA
- 8. Carolina Urologic Research Center, Myrtle Beach, SC

Andrew J. Armstrong, MD ScM FACP

I have the following financial relationships to disclose:

Consultant for: Astellas, Pfizer, Bayer, Janssen, Dendreon, BMS, AstraZeneca, Merck, Forma, Celgene, Clovis, Exact Sciences

Grant/Research support from: NIH/NCI, PCF/Movember, DOD, Astellas, Pfizer, Bayer, Janssen, Dendreon, Genentech/Roche, BMS, AstraZeneca, Merck, Constellation, Beigene, Forma, Celgene, Amgen

I will discuss the investigational use of FT-7051, an investigational drug, in a First-in-Human study; FT-7051 is an investigational drug – no efficacy or safety claims are intended or implied.

Background

- CBP/p300 are co-activators of the androgen receptor (AR) relevant in metastatic castration-resistant prostate cancer (mCRPC)
 - CBP/p300 is overexpressed in advanced prostate cancer and is upregulated following androgen withdrawal¹
 - CBP/p300-mediated acetylation of AR, for example, stabilizes the protein and increases AR signaling^{2,3}
 - p300 and CBP are involved in androgen-independent transactivation of the AR⁴
- Inhibitors of CBP/p300 targeting the BRD^{5,6} and the HAT⁷ have shown activity in preclinical models of prostate cancer
- FT-7051, an investigational drug, is an oral, potent, and selective inhibitor of CBP/p300 bromodomain with activity in preclinical prostate cancer models, including those resistant to enzalutamide^{8,9}

See AACR-NCI-EORTC 2021 Poster P204

Potential Clinical Outcomes: A CBP/p300 inhibitor may reduce AR transcriptional activity in AR+ cancers and inhibit proliferation

Ac, acetylation; AR, androgen receptor; BRD, bromodomain; CBP, cyclic adenosine monophosphate-response element binding (CREB) protein binding protein; H3K27, histone H3 at lysine 27; HAT, histone acetyltransferase; p300, E1A binding protein p300

The Courage Study (7051-ONC-101)

- First-in-human, multicenter, phase 1, open-label study (NCT04575766)
- Bayesian optimal interval (BOIN) design with an accelerated titration (AT) phase
 - Compared with the standard '3+3' design, the advantages of the BOIN design include a higher probability of selecting the correct maximum tolerated dose (MTD) and a lower risk of exposing patients to sub-therapeutic or overly toxic doses¹⁰
- FT-7051 is administered orally on a 28-d cycle (21-d on / 7-d off)

Figure 2: BOIN Design

The primary study objectives are to evaluate the safety and tolerability of FT-7051 and determine the recommended phase 2 dose of FT-7051 through assessments of:

- Dose limiting toxicities (DLTs)
- Clinically relevant adverse events (AEs) and SAEs
- Clinically relevant safety laboratory values

Key secondary endpoints include:

- % change in PSA from baseline to 12 weeks and maximum decrease in PSA from baseline
- Time to PSA progression
- Time to radiographic progression (soft tissue per RECIST 1.1; bone lesions per PCWG3)
- Overall response rate and radiographic response rate (per RECIST 1.1) for soft tissue lesions
- Complete response rate for patients with bone lesions (per PCWG3)

Patient Population

NATIONAL CANCER

NSTITUTE

The future of cancer therapy

Key Inclusion Criteria:

- Diagnosis of mCRPC with either adenocarcinoma or mixed histology
 - At least 1 prior line of treatment for mCRPC (prior taxane therapy is allowed)
 - Evaluable disease at enrollment, and
 - Rising PSA levels
- Previous failure with at least 1 approved AR pathway inhibitor (eg, abiraterone, enzalutamide, apalutamide, or darolutamide)

Key Exclusion Criteria:

- Prior anticancer treatment with:
 - Small molecules within 4 weeks
 - Prior radiation therapy within 4 weeks
 - Prior androgen antagonist therapy within 2 weeks
 - Prior radium-223 therapy within 6 weeks

Enrollment:

- Eight patients enrolled as of 01-Sep-2021
 - □ 3 (38%) ongoing
 - 5 (63%) discontinued

able 1: Summary of Baseline Characteristics			
Parameter	Median (range) or n (%)		
Age, years	70 (64-82)		

Age, years	70 (64-82)
Race:	
White	8 (100%)
Ethnicity:	
Hispanic or Latino	1 (13%)
Not Hispanic or Latino	7 (88%)
Years since first mCRPC diagnosis	2.0 (0.4-5.3)
Prior lines of mCRPC therapy	3.0 (1-6)
Prior taxane therapy for mCRPC	7 (88%)
Baseline PSA, ng/mL	89.4 (12.2 - 1799)
Visceral disease progression	4 (50%)
Nodal disease progression	5 (63%)
Bone disease progression	7 (88%)
AR-v7+ at baseline	4 (80%) ^a
a. AR-v7+ via Rarecyte assay; n=5 evaluable	

Time on Treatment and Disposition

NATIONAL CANCER

INSTITUTE

The future of cancer therapy

American Associatio for Cancer Research*

FINDING CURES TOGETHER

Figure 3: Summary of Time on Treatment and Patient Disposition ^a

NATIONAL CANCER

STITUTE

The future of cancer therapy

Table 2: Treatment-Emergent AEs (TEAEs) Reported in ≥2 Patients

	Grade 1-2	Grade 3-5	Overall
Preferred Term	(N = 8)	(N = 8)	(N = 8)
Diarrhea	4 (50%)	0	4 (50%)
Nausea	4 (50%)	0	4 (50%)
Fatigue	3 (38%)	0	3 (38%)
Blood creatinine increased	2 (25%)	0	2 (25%)
Decreased appetite	2 (25%)	0	2 (25%)
Dizziness	2 (25%)	0	2 (25%)
Vomiting	2 (25%)	0	2 (25%)
Weight decreased	2 (25%)	0	2 (25%)

- Most TEAEs were mild (Gr1) or moderate (Gr2) with no events leading to treatment discontinuation
 - One DLT (Gr3 hyperglycemia, possibly related)
 - Medical History: BMI 30.8, Gr2 hyperlipidemia
 - Dose reduced from 150 mg to 100 mg; patient ongoing at 100 mg
 - Managed with insulin and metformin
 - □ Three patients had disease progression of prostate cancer (Gr3 in one patient; Gr5 in two patients)

Pharmacokinetics

Figure 4: FT-7051 Plasma Concentration – Time Curve

Values reported as mean \pm SD for 150 mg (N=4). TGI, tumor growth inhibition

FT-7051 is rapidly absorbed following oral administration (T_{max}: 1 - 2 hr) with an estimated elimination half-life (t_{1/2}) of ~ 5 hr

NSTITUTE

 Systemic exposure at 150 mg is approaching the predicted efficacious exposure target derived with PK/efficacy modeling¹¹

Target Engagement Analysis

 Reductions in nuclear H3K27Ac staining intensity in skin biopsy samples provide preliminary evidence of target modulation

NATIONAL

ISTITUTE

The future of cancer therapy

for Cancer Researc

Figure 5: Change from Baseline in H3K27Ac Staining Intensity

Patient Vignette

One patient in the 150 mg cohort experienced Gr3 hyperglycemia (DLT) and achieved a confirmed >50% decrease in PSA with continued decline and ongoing stable disease as of the data cutoff

PSA (ng/mL)

Baseline Characteristics

- Demographics: 66-year-old white male
- Node-only measurable disease
- Chemotherapy naïve with prior enzalutamide, pembrolizumab, and radiation

Biomarker Data

- Positive for AR F877L mutation
- No CTCs at baseline for AR-v7 testing

Figure 6: Single Patient PSA Over Time

- Available safety data suggest that FT-7051 is well tolerated
 - One DLT (hyperglycemia) reported for a patient receiving 150 mg FT-7051; patient was dose reduced (100 mg) and remains on study as of the data cutoff with a >50% reduction in PSA levels
- Preliminary PK data indicate that FT-7051 exposure is approaching the predicted efficacious exposure threshold determined by PK/efficacy modeling
- Preliminary analysis of target engagement biomarker in surrogate tissue suggests pathway modulation at the exposures tested

These early data support the continued investigation and dose finding of FT-7051 in this ongoing study

Acknowledgments

- The authors thank the patients and their families for participation in the study
- The authors thank David VanderWeele, MD, PhD and his team for their contributions to the study
- This study is funded by Forma Therapeutics, Inc., Watertown, MA
- FT-7051 is an investigational drug; no efficacy or safety claims are intended or implied

The future of cancer therapy

- 1. Comuzzi B, et al. (2004). J Pathol. 204(2):159-66.
- 2. Fu M, et al. (2000). J Biol Chem. 275(27):20853-60.
- 3. Faus H, Haendler B. (2008). J Cell Biochem. 104(2):511-24.
- 4. Debes JD, et al. (2005). *Cancer Res*. 65(13):5965-73.
- 5. Jin L, et al. (2017). *Cancer Res*. 77(20):5564-75.
- 6. Welti J, et al. (2021). Cancer Discov. doi: 10.1158/2159-8290.CD-20-0751.
- 7. Lasko LM, et al. (2017). *Nature*. 550(7674):128-32.
- 8. Guichard SM. *Epigenetic Therapeutic Targets Summit.* July 13-15, 2021.
- Chen EL, Hawkey N, Thomas BC, Ware KE, Runyambo D, Caligiuri M, Wilker E, Soderblom EJ, Moseley III MA, Guichard SM, Armstrong AA, Somarelli JA. Targeting the p300/CBP epigenetic pathway to overcome hormone therapy resistance in advanced prostate cancer. AACR-NCI-EORTC 2021. Poster P204.
- 10. Yuan Y, et al. (2016). *Clin Cancer Res*. 22(17):4291-301.
- 11. Wong H, et al. (2017). Drug Discov Today. 22(10):1447-1459.